
Concern is growing among the scientific
community, government regulators, and the
public that endocrine-disrupting chemicals
(EDCs) in the environment are adversely
affecting human and wildlife health by dis-
rupting endocrine function (1,2). Adverse
outcomes have been observed in experimen-
tal animals and wildlife; potential effects in
humans include reproductive and develop-
mental toxicity, carcinogenesis, immunotox-
icity, and neurotoxicity (3). EDCs may exert
adverse effects through a variety of mecha-
nisms, such as estrogen receptor (ER)-medi-
ated mechanisms of toxicity. 

The scientific debate surrounding EDCs
has grown contentious, partly because some
suspected EDCs are economically important
chemicals, high in production volume. The
public and regulatory concerns led to gov-
ernment regulatory actions and expanded
research across Europe, Japan, and North
America (4,5). In response to congressional
action, the U.S. Environmental Protection
Agency (EPA) established the Endocrine
Disruptor Screening and Testing Advisory
Committee (EDSTAC); EDSTAC recom-
mended a plan to screen and test for estro-
genic, androgenic, and thyroid end points
for a large number of chemicals. To accom-
plish this, chemicals will be screened (tier 1)
using a multiple end point strategy that

includes more than 20 different in vitro and
in vivo assays recommended by EDSTAC
(6). Although more than 87,000 chemicals
were initially selected for evaluation, many
were polymers or otherwise unlikely to bind
to steroid receptors, leaving about 58,000
chemicals for evaluation in tier 1. The num-
ber that will progress to the testing step (tier
2) (7) is not known. Processing chemicals
through both tiers will require many years
and extensive resources. Hence, the U.S.
EPA has adopted an approach requiring pri-
orities to be set before tier 1. Priority setting
will use currently available information, such
as production volume, human exposure,
environmental fate and persistence, and bio-
logic data. Priority setting rank-orders the
most important chemicals for more resource-
intensive and costly tier 1 evaluations. 

Several types of hormonal activities,
including estrogenic, androgenic, and thy-
roidal, are believed to contribute to endocrine
disruption (3). Endocrine disruption can
result from a variety of biologic mechanisms
that interfere with these activities. Receptor
binding is a major mechanism of toxicity for
estrogens. Rapid methods for characterizing
ER binding activity are important. Such
methods should generate a small fraction of
false negatives (chemicals predicted not to
bind to their receptor, but which actually

bind). False negatives constitute a crucial error
because they will receive a relatively lower pri-
ority for evaluation in tier 1 and may remain
in use for many years. Furthermore, the
methods should provide reasonable quantita-
tive accuracy for true positives, because those
with higher affinities will generally be of
higher priority. Computational methods,
including structure–activity relationships
(SARs), can predict receptor binding and
therefore can be used to evaluate untested
chemicals to provide biologic data for use in
priority setting (8–12). 

The first step in developing SAR models
is acquisition of a training set of chemicals
that have known activities. Information
derived from structure of individual chemi-
cals in the training set, such as hydrophobic-
ity, structural fragments associated with
activity (structural alerts), charged surface
area, and so on, is called descriptors.
Descriptors are then evaluated for their abil-
ity to predict the activity of the training set
(model construction) and of other chemical
data sets not used in the training set, but
which have known activities (the testing set).
This latter step is called external validation.
With adequately validated performance, such
models can be used to predict activities of
untested potential EDCs. Numerous compu-
tational methods can be used to develop SAR
models. The choice of methods depends on
the nature of the application and the avail-
able data. For example, pharmacophores
(three-dimensional substructures of active
chemicals) are of great importance in drug
discovery to generate potential candidates by
rapidly searching large structure databases for
chemicals with similar structures (13).
Quantitative structure–activity relationships
(QSARs) are used widely to correlate changes
in biologic activity among chemicals with
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Articles

A number of environmental chemicals, by mimicking natural hormones, can disrupt endocrine
function in experimental animals, wildlife, and humans. These chemicals, called “endocrine-dis-
rupting chemicals” (EDCs), are such a scientific and public concern that screening and testing
58,000 chemicals for EDC activities is now statutorily mandated. Computational chemistry tools
are important to biologists because they identify chemicals most important for in vitro and in
vivo studies. Here we used a computational approach with integration of two rejection filters, a
tree-based model, and three structural alerts to predict and prioritize estrogen receptor (ER) lig-
ands. The models were developed using data for 232 structurally diverse chemicals (training set)
with a 106 range of relative binding affinities (RBAs); we then validated the models by predicting
ER RBAs for 463 chemicals that had ER activity data (testing set). The integrated model gave a
lower false negative rate than any single component for both training and testing sets. When the
integrated model was applied to approximately 58,000 potential EDCs, 80% (~46,000 chemicals)
were predicted to have negligible potential (log RBA < –4.5, with log RBA = 2.0 for estradiol) to
bind ER. The ability to process large numbers of chemicals to predict inactivity for ER binding
and to categorically prioritize the remainder provides one biologic measure to prioritize chemicals
for entry into more expensive assays (most chemicals have no biologic data of any kind). The gen-
eral approach for predicting ER binding reported here may be applied to other receptors and/or
reversible binding mechanisms involved in endocrine disruption. Key words: endocrine-disrupting
chemicals, estrogen receptor binding, relative binding affinties, risk assessment, structural alerts,
tree-based models. Environ Health Perspect 110:29–36 (2002). [Online 10 December 2001]
http://ehpnet1.niehs.nih.gov/docs/2002/110p29-36hong/abstract.html



changes in their descriptors (14–16). We
have developed several pharmacophore and
QSAR models (17–20) to predict the bind-
ing affinity of chemicals to the ER. Many of
these models, together with those reported
here, have been integrated into a four-phase
system (21) that is an efficient tool in setting
priorities for potential estrogenic EDCs. 

In this study, we used a tree-based model
and three structural alerts to evaluate 58,000
chemicals and predict those that have negli-
gible potential to bind to the ER. The tree-
based approach used a set of IF-THEN rules
based on descriptors to determine a chemi-
cal’s potential to bind to the ER. The depic-
tion of the results provides a tree with a
binary branching. The IF-THEN rule can
look like this: If a chemical is steroidlike,
then it goes to branch A. If not, it goes to
branch B. Structural alerts are two-dimen-
sional (2D) structural features that exist in
most active chemicals. Before we applied the
tree-based model and structural alerts to
large data sets, we used several rejection fil-
ters to reduce the number of chemicals in
the data set. Extensive validation has demon-
strated that the rejection filters eliminated no
active chemicals, even very weak binders.
We found that the integrated combination
of rejection filters, structural alerts, and tree-
based models can be used to prioritize, with
low false negative rates, the 58,000 chemi-
cals under consideration.

Material and Methods

Data sets. In this study, we first constructed
models using a training data set, and then
validated them using a testing data set. Once
the models were validated, they were applied
to a real-world data set—a target data set for
priority setting purposes. 

Training data set. The reliability and
predictability of a computational model not
only depends on the computational method
but varies significantly with the quality of the
training data set. The training data set is used
to generate valid rules and to guide decision
making. To build a robust and predictive
computational model for EDCs, it is impor-
tant to have a training set of chemicals with
broad structural diversity and an accurate and
reproducible measure of biologic activity over
a wide range. From a literature survey, we
found that data may vary according to inter-
laboratory protocol and technique differ-
ences. Therefore, we established an in-house
rat ER binding assay to provide data for
model development, which were reported by
Blair et al. (22) and Branham et al. (23).

The training data set was designed to
reflect the structural diversity of the ER lig-
ands and a wide distribution of ER binding
affinities necessary for a robust model (19).
Our training data set (National Center for

Toxicological Research [NCTR] data set) of
232 chemicals has ER relative binding affini-
ties (RBAs) that range over 106-fold; the
RBA value for the endogenous ER ligand,
17β-estradiol (E2), was set to 100. This
NCTR data set has been used extensively to
build and validate a series of computational
models (20,21) proposed for priority setting.
The cut-off log RBA value to distinguish ER
binders from non-ER binders is set to –4.5,
which is our lowest experimental resolution
in the ER binding assay. The 131 ER binders
have log RBAs ≥ –4.5, whereas 101 non-ER
binders have log RBAs < –4.5. 

Test data set. A computational model,
once built, should be validated using exter-
nal data sets to assess the potential rate of
false positives and false negatives before it is
applied to the target data set (a data set with
unknown activity value). An ideal test data
set should be directly related to the real
problem in question. For this particular
application, we developed the model to pre-
dict ER RBAs of 58,000 environmental
chemicals, mostly pesticides and industrial
chemicals. On the basis of this considera-
tion, we selected a data set reported by
Nishihara et al. (24) as a test data set. This
data set contains 517 chemicals tested with
the yeast two-hybrid assay, of which > 86%
are pesticides and industrial chemicals. We
used only 463 chemicals for this study after
eliminating the ones that lacked unique
structures, such as mixtures. Only 62 chemi-
cals were categorized as active based on activ-
ity > 10% of 10–7M E2, as defined by
Nishihara et al. (24). The majority of the
chemicals were inactive, which is similar to
the real-world situation where inactive
chemicals should be a large portion in the
target data set. 

Target data set. Walker et al. (25) devel-
oped a database that contains a large and
diverse collection of known pesticides and
industrial chemicals as well as some food
additives and drugs. The database contains
92,964 Chemical Abstract Service (CAS) reg-
istry numbers of chemicals that will probably
have to be evaluated for their potential
endocrine disruption. A final data set of
58,230 chemicals was used for this study
after eliminating 34,573 chemicals for which
structures were not available (25) and 161
chemicals for which three-dimensional struc-
tures could not be generated. The molecular
structures of these chemicals were processed
according to the following criteria (26): The
records are valid (i.e., they contain completed
structural information and there are no obvi-
ous errors in the structural description);
counterions and solvent molecules were
removed to obtain single structure records;
and charges on acidic and basic groups were
neutralized by adding or removing protons.

This prevented structural differences caused
by different protonation states, which might
lead to differences in the calculation of the
molecular descriptors. 

Integrated system. The overview of the
integrated system, based on rejection filters, a
tree-based model, and three structural alerts,
is shown in Figure 1. First, we used two
rejection filters to eliminate nonbinders.
Then we used three structural alerts and a
tree-based model separately to predict ER
binding activities of chemicals passing the
rejection filters. Chemicals predicted to be
active by the tree-based model or any one of
the structural alerts were identified as poten-
tial ER binders. We desired that a large num-
ber of non-ER binders would be eliminated
in this process, so that only a small fraction
of the chemicals in the original data set
would be ER binders that would need evalu-
ation experimentally or be predicted using
more precise models, such as QSARs (20). 

Rejection filters. We used two rejection
filters and excluded chemicals that matched
any of these two filters (Figure 1). The first
rejection filter is a molecular weight range,
which was set to < 94 or > 1,000. The mole-
cular weight of phenol, 94, was considered
the lowest limit for a chemical to bind to
ER, whereas a molecular weight of 1,000
was considered the upper limit as suggested
by EDSTAC. The second rejection filter
requires that an ER binder contain at least
one ring structure of any size. This structural
rejection filter is developed based on the fact
that, from a large survey (27), there are no
known estrogens lacking a ring.

Structural alerts. Structural alerts are key
2D structural fragments associated with ER
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Figure 1. Overview of the integrated system that
consists of two rejection filters, three structural
alerts, and a tree-based model.

Decrease

N
um

be
r o

f c
he

m
ic

al
s

N
Chemicals

M
Chemicals

K Potential
ER binders

1. Rejection filters
eliminate chemicals
with molecular weight
< 94 and > 1,000 and
no ring structures

2. Combined model prioritizes
chemicals using
three structural alerts or
tree-based model



binding. Figure 2 depicts the three structural
alerts [i.e., the steroid diethylstilbestrol
(DES) and phenolic skeletons]. Chemicals
containing any of these structural alerts were
considered to be potential ER binders. We
selected these structural alerts through care-
ful SAR examination of a large number of
chemicals with known binding affinities to
the ER (27) in conjunction with knowledge
of the recently reported ligand–ER crystal
structures (28,29). 

Tree-based model. Classifying or parti-
tioning chemicals using the tree-based
approach is based on the similar property
principle, which states that structurally simi-
lar chemicals exhibit similar biologic proper-
ties (30). The measure of similarity between
chemicals depends on the use of molecular
descriptors calculated from their structures.
Effective classification of chemicals depends
critically on the nature of the molecular
descriptors used. Thus, the tree-based model
development consisted of two steps: selecting
several descriptors using the genetic function
approximation (GFA) method, and using
these descriptors to construct a tree-based
model. 

For the descriptor selection based on
GFA, we investigated about 150 molecular
descriptors. These descriptors cover a variety
of structural information, including the con-
formational, electronic, information content,
quantum mechanical, spatial, thermody-
namic, and topologic nature of a structure.
We selected an optimal, biologically relevant
subset of descriptors for the tree-based
model using GFA. GFA is a genetic algo-
rithm-based statistical approach (31,32),
which has been widely used for QSAR
model development. Basically, GFA starts
with a randomly selected set of descriptors
from the original descriptor pool to generate
a population of QSAR equations (100 equa-
tions in this study) using multivariate regres-
sion techniques such as the least-square
regression method used in this study. Then
the quality of each individual equation is
estimated using a lack-of-fit (LOF) score
function (31,32). These equations can be
rank-ordered based on the model’s quality.
From evolution, parents (parent QSAR
models) with good genes (descriptors) often
produce better children (offspring QSAR
models). Therefore, the two best QSAR
models are chosen to “mate” and propagate
their “genes” to offspring through the cross-
over operation, in which portions of the
descriptors are taken from each parent
QSAR equation and recombined to create
the child. A good offspring QSAR model
replaces the worst model in the equation
pool. Mating needs to be repeated many
times (20,000 times in this study) until there
is no significant improvement in the model;
at this time, good combinations of descrip-
tors are discovered and spread through the
population of QSAR models. It is reasonable
to assume that the descriptors used more by
QSAR models in the population should be
more biologically relevant to the end point
investigated. Therefore, we selected the top
10 descriptors that appeared most frequently
in the QSAR model population for the tree-
based model development.

A classification tree is the collection of
many production rules, expressed as premise
and conclusion (in the form IF ... THEN ...)
and displayed in the form of a tree contain-
ing only binary branching. For example, a
simple rule could be “if molecular weight >
300, then the chemicals are active.” A tree-
based model provides an alternative to linear
and additive models for regression problems
and to linear and additive logistic models for
classification problems. Because tree-based
model constructions are recursive in nature,
they are also referred to as the recursive par-
titioning method (33) for pattern recogni-
tion in drug discovery. Depending on the
nature of the activity data (end point), the
tree can be constructed for either regression

or classification. Each end node (“leaf of the
tree”) of a regression tree gives a quantitative
prediction, whereas the classification tree
gives categoric predictions. The classification
tree is used most commonly in data analysis,
where the end point is usually binomial
(yes/no). In the present application, the tree-
based model to classify chemicals into active
and inactive ER RBA categories is imple-
mented in S-plus software (34). 

The development of a tree-based model
consists of two steps, tree construction and
pruning. In tree construction, a parent pop-
ulation is split into two offspring nodes that
become parent populations for further splits.
The splits are selected to maximally distin-
guish the response variable in the left and
right nodes. Splitting continues until chemi-
cals in each node are either in one activity
category or cannot be split further to
improve the model. To avoid overfitting of
the training data, the tree needs to be cut
down to a desired size using tree cost-com-
plexity pruning. In this study, we tested all
possible combinations in groups of three to
six of these 10 descriptors selected by GFA
in a combinatorial way to construct the tree-
based models. We used the model giving the
highest correct prediction rate for the
NCTR data set for final application.

Validation of models. In this study, we
assessed the quality of a model by several sta-
tistical measures, including false negative,
false negative rate, false positive, false posi-
tive rate, and concordance. False positive is
the number of chemicals predicted to be
active by the model but inactive in the assay;
thus the false positive rate is the false posi-
tives divided by the total number of inactive
chemicals in the data set. In contrast, false
negative is the number of chemicals pre-
dicted to be inactive by the model but active
in the assay, and the false negative rate is the
false negatives divided by the total number
of active chemicals in the data set.
Concordance is the overall agreement
between the predicted and experimental
results, positive and negative. The same cri-
teria were also used to measure the predictiv-
ity of the model for the test data set. 

General computations. We created and
maintained chemical structures for the
NCTR data set, the Nishihara et al. (24)
data set, and the Walker et al. (25) data set
using Molecular Design Limited (MDL)
Information Systems’ Integrated Scientific
Information System (ISIS/Base 2.2.1) soft-
ware (MDL Information System, San
Leandro, CA) running on a personal com-
puter. We identified three structural alerts
for chemicals using the ISIS/Base software.
The tree-based models were constructed
using S-Plus (MathSoft, Inc., Cambridge,
MA) software. Descriptor generation and
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Figure 2. Three structural alerts. Chemicals con-
taining any of these alerts are predicted to be
active. 
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GFA analysis were performed using Cerius2

(Molecular Simulation Inc., San Diego, CA).
Preprocessing and rejection filtering for

the Walker data set were conducted on an
SGI workstation using an in-house program
developed in programming language C. The
program checks and corrects the connection
table of a structure in the sdf file format
exported from ISIS Base, removes solvent
molecules, and changes charge states by
adding or removing protons if necessary.
Then the program calculates molecular
weight and counts the number of rings in a
structure using a valid algorithm (35). 

Results

The approach for the prediction of ER bind-
ing using several computational models con-
sisted of two steps (Figure 1). First, we
applied two rejection filters to eliminate inac-
tive chemicals, and then used a tree-based
model combined with three structural alerts
to identify potential ER binders. The
approach was developed based on the NCTR
data set and validated by the Nishihara et al.
(24) data set. We then used this system to
identify potential ER binders in 58,000
chemicals (the Walker data set).

Rejection Filters
We investigated various parameters for
potential rejection filters. The criteria used
to select the filters are that a valid and effi-
cient rejection filter should not generate any
false negatives and should be able to signifi-
cantly reduce the number of chemicals for
experimental evaluation. 

Solubility and permeability are important
determinants for a chemical to bind to its tar-
get protein. Poor absorption or permeation
of a chemical can greatly limit drug activity,
even if it has good binding activity. Lipinski
et al. (36) investigated these characteristics
experimentally and computationally in drug
design and development. They found that
chemicals with poor absorption or perme-
ation are more likely to have one of the fol-
lowing criteria in the structure: a) more than
5 hydrogen bond donors, b) 10 hydrogen
bond acceptors, c) molecular weight > 500,
and d) logP is > 5 (36). This is Lipinski’s
“rule of five,” which has proven very useful in
eliminating nondruglike chemicals in the
early stage of drug discovery. The name does
not imply that there are five rules; rather it is
derived from the fact that the criteria in each
rule are a numeric multiple of five. However,
in applying these rules as rejection filters for
the NCTR data set, we rejected 33 active
chemicals by these rules (false negative rate =
25%), of which 15 chemicals actually were
strong ER ligands (log RBA > 0). These rules
might be useful for drug discovery purposes
to identify potential but not all possible leads.

However, for screening purposes in a regula-
tory context, all possible active chemicals,
even potentially very weak ones, must be
identified. This explains why false negatives
are of great concern: It may be many years
before the lowest priority chemicals go
through screening and testing steps.
Therefore, Lipinski’s rule of five was not use-
ful for predicting ER binding. However,
because the rule of five includes criteria useful
for in vivo activity, it may be used to improve
predictions, in conjunction with binding
data, for in vivo activity.

Two rejection filters, the molecular weight
range and ring structure, met the criteria of
not generating false negatives and being able
to reduce the size of the data set. Chemicals
matching any one of these two filters were
excluded from subsequent models. As shown
in Table 1, these two rejection filters correctly
eliminated six inactive chemicals from the
NCTR data set and 98 from the Nishihara
data set, respectively. No false negatives were
introduced using these two rejection filters.
The sizes of the Nishihara and Walker data
sets were reduced about 21% and 29%,
respectively. This demonstrated that, for real-
world applications, these two rejection filters
might significantly reduce the number of
chemicals for further evaluation with a mini-
mum risk of introducing false negatives.

Structural Alerts
We used three structural alerts to identify
potential ER binders. Each alert indepen-
dently characterized the unique structural fea-
tures important for ER binding. We found
that the length and breadth of both the
steroid skeleton and DES skeletons were filled

well into the receptor-binding pocket, as illus-
trated in Figure 3. In addition, although most
endogenous hormones contain the steroid
skeleton, most strong estrogens have two ben-
zene rings separated by two carbon atoms
(37). It has been long understood that the
phenolic ring is often associated with estro-
genic activity (38). The contribution of the
phenolic ring in binding is much more signif-
icant than any other structural feature (27).
By overlaying the crystal structures of four lig-
and–ER complexes (E2–ER, 4-hydroxyta-
moxifen–ER, raloxifene–ER, and DES–ER
complexes) based on their common protein
residues at the binding site, Shi et al. (20)
found that the phenolic rings of all four lig-
ands are closely positioned at the same loca-
tion to allow hydrogen bond interactions with
Glu 353, Arg 394 of the receptor, and a water
molecule.

When we applied these structural alerts
to the training and testing data sets, most
active chemicals contained one of the struc-
tural alerts. The results of structural alerts
searching on these data sets are summarized
in Table 2. Of 131 active chemicals in the
NCTR data set, 110 (84%) of the chemicals
contained the phenolic ring, 30 (23%) con-
tained the DES skeleton, and 22 (17%) con-
tained the steroid skeleton. A total of 95%
(124/131) of the active chemicals matched
one or more of these structural alerts. For
the Nishihara data set, about 90% (56/62)
of the active chemicals were identified by
these three structural alerts. 

Tree-Based Model
The tree-based model classifies chemicals
into active and inactive classes using a series
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Table 1. Results of two rejection filters for the NCTR, Nishihara et al. (24), and Walker et al. (25) data sets. 

The number (%)
Data Data Eliminated by MW Eliminated by ring of eliminated 
sets size Active Inactive Active Inactive chemicals

NCTR 232 0 0 0 6 6 (2.6%)
Nishihara et al. 463 0 28 0 89 98 (21.2%)
Walker et al. 58,230 16,048 1,495 16,689 (28.7%)

This table lists the number of chemicals eliminated by either molecular weight (MW) range or lack of ring criteria as well
as their combination. No active chemicals were rejected by these two filters.

Figure 3. The surface of the ER binding site (yellow dots) bound with (A) E2 and (B) DES.
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of rules on the basis of descriptors. The
descriptors characterize the structural simi-
larities among chemicals with respect to the
biologic activity modeled. Therefore, the
critical task for model development is to
evaluate a large number of possible molecu-
lar descriptors and identify the ones most
related to the known active chemicals. We
first calculated 153 molecular descriptors, of
which we selected the top 10 using the GFA
approach. Then we developed several tree-
based models for the NCTR data set using
combined groups of three to six of the top
10 descriptors. The model giving the best
concordance was the final model. The final
tree-based model consisted of five descriptors:
phenolic ring index, logP, Jurs-PNSA-2,
Jurs-RPCS, and shadow-XY fraction. The
phenolic ring index indicates the presence or
absence of the phenolic group in a chemical.
The logP measures hydrophobicity of a chem-
ical (39). The Jurs-PNSA-2 and Jurs-RPCS

characterize the positive charged surface area
of a molecule by combining molecular shape
and electronic information (40). The shadow-
XY fraction is a geometric descriptor related
to the breadth of a molecule (41). Each
descriptor encodes important structural char-
acteristics for ER binding. For example, the
phenolic group is considered the most impor-
tant structural feature for ER binding (38).
Our recent SAR study on a large number of
xenoestrogens demonstrated that substitution
at 7α and 11β position of E2 enhanced ER
binding by increasing the breadth of a chemi-
cal (27). The hydrophobicity and charged
surface area are, in principle, critical for all
receptor-binding systems (36).

The tree-based model using five optimal
descriptors is summarized in Figure 4. The
model identified the phenolic ring index as
the most important descriptor for ER bind-
ing. If chemicals contained a phenolic moi-
ety but also had logP values >1.49, they were

more likely to be ER binders. In contrast,
chemicals without a phenolic moiety were
less likely to be ER binders unless they had
relatively larger hydrophobicity (logP),
charged surface area (Jurs-PNSA-2 and Jurs-
RPCS), and breadth of the structure
(shadow-XY). 

Table 3 summarizes the results of the
tree-based model on the training and testing
data sets. The model had a concordance of
about 88% for the NCTR data set. Of the
131 ER binders, 123 were correctly pre-
dicted to be active. Of the 101 non-ER
binders, 81 were correctly predicted to be
inactive. The false positive and false negative
rates (Table 4) were 19.8% (20/101) and
6.1% (8/131), respectively. With the model
applied to the Nishihara data set, the con-
cordance was 82.5%, which is slightly lower
than that for the training data set. 

Combination of the Tree-Based
Model with the Structural Alerts
The tree-based model and structural alerts
can independently identify most active
chemicals with 6.1% and 4.6% false nega-
tive rates for the NCTR data set, and 12.9%
and 9.7% for the Nishihara data set. Even
though both models could be used to iden-
tify independently the potential ER binders
for a variety of applications, it was desirable
to reduce further the false negative rate for
regulatory application. Thus, we studied a
combination of the tree-based model with
the three structural alerts for potential prior-
ity-setting applications. Chemicals predicted
to be active by any of these models were
considered to be ER binders. The combined
model results for the training and testing data
sets are summarized in Table 4. The com-
bined models produced only 2.3% and 6.5%
false negative rates for the NCTR and
Nishihara data sets, respectively, which were
nearly half of the false negative rates observed
using individual models. It might be
expected that the combined models would
produce an increase in the false positive rate.
Even though a low false negative rate is of
great importance, a lower false positive rate is
always desirable from an economic perspec-
tive. For the NCTR data set, the tree-based
model and structural alerts yielded 19.8%
and 34.7% false positive rates, and we
observed only a slightly higher false positive
rate (37.6%) for the combined model. We
also observed similar results for the Nishihara
data set, in which the false positive rate for
the combined model, the tree model, and
structural alerts was 21.2%, 18.2%, and
17.7%, respectively. This demonstrated that
the combined model could significantly
reduce the false negatives without signifi-
cantly increasing screening costs resulting
from an increased false positive rate. 
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Figure 4. Tree-based model. The model displays a series of yes/no (Y/N) rules to classify chemicals into
active (A) and inactive (I) categories based on five descriptors: phenolic ring index, logP, Jurs PNSA-2,
shadow-XY, and Jurs RPCS. The squares represent the rules; the circle represents the categoric results. 
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Table 2. Results of structural alerts for the training and testing data sets

Data Data Phenol ring DES skeleton Steriod skeleton Any alerts
sets size Active Hita Activeb Hit Active Hit Active Hit Active

NCTR 232 131 131 110 34 30 31 22 157 124
Nishihara 463 62 120 54 17 8 11 7 131 56
et al. (24)
aHit, the number of chemicals containing the structural alert. bActive, the number of hit chemicals active in the assay.



It is worthwhile to point out that both
the tree-based model and three structural
alerts provided only a yes/no prediction.
However, chemical potencies for in vivo
uterotrophic response are significantly higher
for high-affinity chemicals than for low-affin-
ity chemicals. It is desirable that the strength
of ER binding activity is ranked for chemi-
cals predicted by the models because this
would allow selection of the highest affinity-
binding chemicals for testing. The tree-based
model and three structural alerts not only
identified different structural attributes asso-
ciated with the ER binding activity, but also
used different approaches to establish the
chemical structure–ER binding activity rela-
tionship. It would be expected that the num-
ber of models predicting a chemical to be
active should increase in direct proportion to
its actual activity. In other words, chemicals
can be ranked based on the number of posi-
tive predictions given by the three structural
alerts and the tree-based model in an additive
manner. As shown in Table 5, chemicals pre-
dicted to be active by none or only one of
four models (three structural alerts and the
tree-based model) were more likely to be
inactive. In contrast, chemicals predicted to
be active by more than two models were
more likely to be ER binders. Specifically, if
chemicals were assigned to be active by more
than three models, they were likely to be in
the highest activity range (more than
100,000-fold below E2). 

Priority Setting of 58,000 Chemicals
We applied the integrated system to priori-
tize the Walker data set, and the results are
summarized in Tables 6 and 7. Of 58,230
chemicals in the data set, 16,689 chemicals
were eliminated as inactive by the two rejec-
tion filters. The resulting 41,541 chemicals
were predicted by the combined model, of
which 34,638 chemicals were predicted to
be inactive, and 6,903 chemicals were pre-
dicted to be active by at least 1 of 4 models
in the combined approach. Through this
process, it might be anticipated that less than
12% of the original chemicals might need to
be tested for their potential ER activity.
Table 7 shows that of 6,903 chemicals, only
104 chemicals were predicted to be active by
more than 3 models—that is, in the most
active category. 

Discussion

The objective of priority setting is to rank a
large number of chemicals for experimental
evaluation from most important to least
important. A number of criteria can be used
for this purpose, such as production volume,
persistence and fate in the environment,
human exposure levels, and so on. Most of
the 58,000 chemicals required for assay have

no biologic data. Computer-based ER-bind-
ing prediction models can supply one ele-
ment of such missing data to be used in
priority setting. 

We integrated a tree-based model with
structural alerts and rejection filters for prior-
ity setting a large number of chemicals based
on estimation of their logRBA range. The sys-
tem reduced the number of environmental
chemicals for assay by about 88%, with a
minimum false negative rate. Tests on three
data sets indicated that this integrated model
is acceptable for priority setting of estrogenic
EDCs. An important advantage of this system
for priority setting is its efficiency of scale
when applied to a large number of chemicals.
When several end points are analyzed simulta-
neously, the efficiency of scale of computation
is even more pronounced. The results from
this integrated model, together with informa-
tion on exposure level, production volume,
and environmental persistence of chemicals,
may be sufficient for prioritizing potential
estrogens. A similar procedure appears appro-
priate for androgens and thyroids.

Computer-based priority setting is widely
applied in drug discovery to identify poten-
tial drugs. The computational approaches
used in the drug discovery process include
models from the simple Lipinski’s rule of five
to classification/clustering and QSARs. The
purpose of priority setting in drug discovery
is to identify a few lead chemicals; sometimes
even one good lead chemical is sufficient if it
can be developed into a drug. It is not neces-
sary to discover or design all possible lead
chemicals. Thus, relatively high false nega-
tives are tolerable, but false positives need to
be low. Either the structural alerts or the tree
model reported here might be good enough
for such applications. However, prediction of
ER binding affinity for chemicals as an ele-
ment in priority setting requires a minimum
false negative rate, because these chemicals
will receive the lowest priority for entry into
screening and testing steps. Results here show
that the process we have designed can signifi-
cantly reduce the number of chemicals for
experimental evaluation with minimum false
negative rate. Moreover, the system can rank
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Table 4. False positive and false negative rates of the tree-based model, structural alerts, and combined
model for the training and testing data sets.

Data sets Error rates (%) Tree-based model Structural alerts Combined model

NCTR False positive 19.8 34.7 37.6
False negative 6.1 4.6 2.3

Nishihara et al. False positive 18.2 17.7 21.2
(24) False negative 12.9 9.7 6.5

Table 5. Ranking the training and testing data sets by adding the prediction results from four models
(three structural alerts and the tree model). 

The number of chemicals predicted to be active by
Data sets Activity rangea No model One model Two models Three modelsb

NCTR ≥ –3.0 2 5 57 36
< –3.0 1 2 28 0

Inactive 63 20 16 2
Nishihara et al. ≥ –3.0 1 0 24 10
(24) < –3.0 3 5 17 2

Inactive 313 27 58 3
aThe three experimental activity categories were defined as follows: ≥ –3.0, chemicals with activities larger than 100,000-
fold below E2; < –3.0, chemicals with activities less than 100,000-fold below E2, but active in the assay. Inactive, chemicals
are below the assay detection limit. For the NCTR data set the log RBA values were used, whereas log RP (relative
potency) values were used for the Nishihara et al. data set. In both cases, the activity value for E2 was equal to 2. The
–3.0 value selected as a cutoff was suggested by the U.S. EPA, which might be used to distinguish active from inactive.
bBecause it is unlikely for chemicals to contain both steroid and DES skeletons, the maximum number of models predict-
ing chemicals to be active was three for the data sets studied. 

Table 3. Results of the tree-based model for the training and testing data sets.

Predicted Predicted Percent
Data set Category Chemicals active inactive concordance

NCTR Active 131 123 8 87.9
Inactive 101 20 81

Nishihara et al. Active 62 54 8 82.5
(24) Inactive 401 73 328

Table 6. Size reduction for the Walker et. al (25) data set using the integrated system shown in Figure 1.

Resulting data 
Process No. of chemicals size (%)

Original data size 58,230 Not applicable
Eliminated by two rejection filters 16,689 41,541 (71.3)
Predicted to be inactive by the combined model 34,638 6,903 (11.9)



chemicals based on their predicted ER bind-
ing activity. This ranking method can pro-
vide useful ER RBA data for use in screening.

Of the variety of xenoestrogens whose
structures have little apparent resemblance to
E2, o,p´-DDT and kepone are of particular
interest for their environmental persistence
and wide industrial application (42,43). Of
six DDT congeners (o,p´- and p,p´-DDT,
o,p´- and p,p´-DDE, and o,p´- and p,p´-
DDD) assayed, only o,p´-DDT reasonably
binds ER about 100,000-fold below E2 (22).
Kepone was about 10,000 times weaker than
E2 in its affinity for ER (22). In contrast, its
analogue, mirex, which has the carbonyl
group replaced by two chlorine atoms, is
inactive in binding. The system reported
here correctly classified all these chemicals,
demonstrating its strength in identification
of apparently weakly ER ligands.

To assess the reliability and applicability
of the models, the Nishihara et al. (24) data
set was used to validate the system. However,
the yeast two-hybrid assay used for this data
set differs from the NCTR RBA assay. The
ER competitive binding assay measures the
binding affinity of a chemical for ER,
whereas the yeast two-hybrid assay measures
ER binding-dependent transcriptional and
translational activity. These two assays differ
in their sensitivity in distinguishing active
from inactive chemicals, particularly for weak
estrogens and antiestrogens (37). We com-
pared the assay results for 80 common chem-
icals from both the Nishihara et al. and
NCTR data sets, of which inconsistent assay
results were observed for 12 chemicals.
Specifically, of 30 active chemicals in the
Nishihara data set, one chemical was found
inactive in the NCTR data set; of 50 inactive
chemicals in the Nishihara data set, 11 chem-
icals were found active in the NCTR data set.
These observations show that even using the
experimental data from the ER binding assay
(the NCTR data set) to predict the experi-
mental results from the yeast two-hybrid
assay (the Nishihara et al. data set), there may
be about a 15.0% (12/80) discrepancy, or
3.3% (1/30) false negative rates and 22%
(11/50) false positive rates. In comparison,
the combined model produced only 19.2%
wrong predictions, or 6.5% false negative
rates and 21.2% false positive rates. This
demonstrated that the discrepancy produced
by the combined model developed with the

ER binding data was comparable to that by
just using ER binding data alone for predic-
tion of activity associated with a more com-
plicated biologic mechanism. The observed
false positives and false negatives for the
Nishihara et al. data set are partially a result
of the discrepancy between the two assays. 

Practically any predictive system, whether
using experimental or computational
approaches, will produce some degree of
error. Decreasing false negatives by modify-
ing the criteria normally increases cost due
to increasing false positives. The combined
model minimized the false negative rate but
increased the false positive rate. Therefore,
we applied two rejection filters to eliminate
chemicals that were most unlikely to be
estrogens before applying the combined
model to minimize the false positive. For the
Nishihara et al. data set, 96 chemicals were
eliminated by the rejection filters, of which
93 were also predicted to be inactive but
three chemicals were predicted to be active
by the combined model. By applying the
rejection filters at the front end, we elimi-
nated these three chemicals before using the
combined model. Thus, the false positive
rate was further reduced. Applying the rejec-
tion filters on a data set is an easy and rapid
process, which has significant advantages for
very large chemical data sets, such as the
Walker et al. (25) data set. 

The integrated system does not contain a
three-dimensional pharmacophore model. A
pharmacophore is a set of structural features
(e.g., hydrogen bond donor, hydrogen bond
acceptor, hydrophobic center) with associated
geometry needed for a chemical to exhibit a
certain type of biologic activity. It is normally
important for modeling receptor binding sys-
tems. The lack of a pharmacophore model
might be why three active chemicals—2,4´-
dichlorobiphenyl, chalcone, and doisynoe-
strol—were predicted to be inactive. Recently,
we have developed several pharmacophore
models that complement the tree-based
model and three structural alerts to form a
more robust prediction system (44).

In summary, the results presented in this
study demonstrate that the integrated model
(two rejection filters, a tree-based model, and
three structural alerts) shows great promise
to screen a larger number of environmental
chemicals for further experimental evalua-
tion of estrogenic endocrine disruption.
Numerous mechanisms are involved in
endocrine disruption, which can be modeled
using a similar approach to the one proposed
in this article. Currently, a large volume of
androgen receptor binding data is being gen-
erated by our group and by the U.S. EPA. A
similar practice is being conducted in our lab
to develop an integrated approach for pre-
dicting androgenic activity. These androgen

models, together with the ones reported in
this article, should provide rich potency-
based information for incorporation into the
U.S. EPA’s Endocrine Disruption Priority
Setting Database version 2.
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